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An analytical model of quenching of steady-state photoluminescence �PL� via Förster resonant energy
transfer �FRET� in blends of a conjugated polymer and low-molecular energy acceptors is presented. The
normalized PL intensity as an analytical function of acceptor concentration is obtained in the case of homo-
geneous polymer-acceptor blend. This function has only two parameters depending on the Förster radii of
energy transfer between the polymer conjugated segments �intrapolymer� and between a conjugated segment
and an energy acceptor. The intrapolymer exciton migration can enhance PL quenching up to 60% as derived
as an asymptote of the model. The model excellently fits the experimental data on quenching of soluble
polyphenylenevinylene PL in blends with trinitrofluorenone.
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I. INTRODUCTION

Conjugated polymers are actively studied nowadays to be
used in various organic devices such as light emission diodes
�LEDs� and solar cells. The processes of generation, trans-
port, recombination, and dissociation of excitons, which are
considered as the lowest energy excitations in conjugated
polymers, are of key importance for the device performance.
In polymer solar cells, excitons are generated by light ab-
sorption and their further dissociation results in separated
electron-hole pairs. In polymer LEDs, excitons are formed
after injection of electrons and holes from the cathode and
anode, respectively, resulting in luminescence.

Exciton dynamics in conjugated polymers is commonly
probed by photoluminescence �PL�, e.g., exciton dissociation
results in quenching of the polymer PL. PL quenching
mechanisms in conjugated polymers could be divided into
two groups: dependent and independent on the photoexcita-
tion intensity. The former group is related to singlet-triplet
annihilation,1 singlet-singlet annihilation,2,3 and quenching
by free charges.4,5 These mechanisms are associated with
interaction between excitons or between an exciton and a
charge generated from another exciton. The latter group is
related to quenching by electric field,6–9 intersystem
crossing,10 charge transfer to an electron acceptor,11 and
Förster resonant energy transfer �FRET� to an energy
acceptor.12–14

At low photoexcitation intensity �100 mW /cm2, i.e.,
about the sun one on the Earth’s surface, the intensity inde-
pendent mechanisms seem to be dominant in the PL quench-
ing. In polymer solar cells, excitons must dissociate into free
electron-hole pairs with high probability in comparison to
other concurring processes, e.g., PL. Efficient exciton disso-
ciation �photoinduced charge transfer� is realized in blends of
conjugated polymers with electronic acceptors, specifically
fullerenes. At the same time, in widely studied blends of
polyphenylenevinylene and fullerene derivatives, the
fullerene can also be an efficient energy acceptor providing
efficient FRET from the polymer to the fullerene.15 More-
over, FRET could also be efficient in those donor-acceptor
blends where the polymer forms a ground-state charge-

transfer complex with an electron acceptor molecule.16,17 In
fact, if such a complex has intense absorption in the spectral
region of the polymer PL,16,17 the FRET from the uncom-
plexed polymer segments to the complex is expected. Thus,
both photoinduced charge transfer and FRET can result in
efficient PL quenching in blends of luminescent conjugated
polymers with electronic acceptors.

If the energy acceptor is highly luminescent, the FRET
efficiency in the polymer-acceptor blend could be deter-
mined from PL of both the polymer and the acceptor.14 If the
quantum yield of acceptor PL is low, e.g., as in fullerenes,
the acceptor induced PL quenching stemming from either/
both energy or/and charge transfer can be easily studied by
measuring the dependence of the polymer PL on the acceptor
concentration under continuous-wave �cw� photoexcitation.
Photoexcitation in the cw mode allows using low photoexci-
tation intensities to avoid the intensity-dependent PL quench-
ing processes. This PL quenching curve can be measured in a
wide dynamic range amounting three orders of magnitude
and more in PL intensity and then be fitted by a model de-
scribing the most significant PL quenching processes.

The well-known PL quenching models for low-molecular-
weight donor-acceptor blends13,18 do not take into account
the multichromophoric structure of conjugated polymers,
which includes conjugated segments of various optical gaps.
It is believed that photoexcitation of the conjugated polymer
leads to efficient energy transfer from shorter conjugated
segments to the longer ones resulting in efficient exciton
migration. Taking into account these intrapolymer energy
transfers, Arkhipov et al. suggested in Ref. 12 a model de-
scribing PL quenching of a conjugated polymer doped by an
energy acceptor. The authors calculated the kinetics of the
polymer PL for different acceptor concentration. The PL
quenching curve in the cw mode can be derived via numeri-
cal integration of the model and is described by four
parameters.12

In this work, we present an analytical model describing
migration and quenching of excitons via FRET in blends of a
conjugated polymer and an energy acceptor. The steady-state
energy distribution of excitons is found by solving the bal-
ance equation taking into account their photogeneration, re-
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combination, and both intrapolymer and polymer-acceptor
FRETs. The spatial migration of excitons is taken into ac-
count by the introduction of their quenching rate distribution.
We apply our model to the simplest case of randomly dis-
tributed acceptor molecules in the polymer and derive a two-
parameter analytical dependence of the polymer cw PL on
the acceptor concentration. Then, we compare the model
with the experimental data in blends of soluble polyphenyle-
nevinylenes and a low-molecular-weight acceptor. Finally,
assumptions, useful asymptotes, and possible extensions of
the model are discussed.

II. MODEL

A. Model approach

The FRET results from the dipole-dipole interaction be-
tween an energy donor and energy acceptor. The FRET rate
depends on their spectral properties, orientation of the tran-
sition dipole moments, and distance r �Ref. 19�,

��r� =
9000 · ln 10 · k2

� · 128 · �6 · n4 · NA · r6�
0

�

pD�f� · �A�f� ·
df

f4 , �1�

where � is the radiative lifetime of the excited donor �conju-
gated polymer segment�, n is the refraction index, NA is
Avogadro’s number, �A�f� is the acceptor molar decadic ex-
tinction, pD�f� is the donor area-normalized luminescence
spectrum, and k is the orientation parameter equal to 2/3 for
the random orientation of the donor and acceptor transition
dipole moments. The distance at which the FRET rate equals
the luminescence rate is defined as the Förster radius,

rF
6 =

9000 · ln 10 · k2

128 · �6 · n4 · NA
�

0

�

pD�f� · �A�f� ·
df

f4 . �2�

If the PL and absorption spectra of individual molecules are
used in Eq. �2�, it gives a complete description of FRET
specifically for ladder-type polyphenylene single chains.20

However, in the case of inhomogeneous spectral broadening
typical for conjugated polymers, spectra of individual chro-
mophores and luminophores are usually not directly acces-
sible from experiment, and one has to use ensemble-
averaged spectra in Eq. �2�. As a result, Eq. �2� gives an
effective rF without correct temperature dependence of
FRET. The latter can be introduced in a model assuming that
FRETs to the lower energy states �EA�ED� is always avail-
able, while the FRET rate to the higher energy states �EA
�ED� is described by the Boltzmann distribution.12,21 Then,
from Eqs. �1� and �2� we have

��ED,EA,r,T�

=
1

�
· � rF

r
�6

· � 1, EA � ED

exp�−
EA − ED

kbT
� , EA � ED. �

�3�

Equation �3� defines the FRET rate from donor D with

energy ED to acceptor A with energy EA at temperature T, kb

is the Boltzmann constant.
We will consider two types of FRETs in blends of a con-

jugated polymer and energy acceptors: between its conju-
gated segments �intrapolymer� and from a conjugated seg-
ment to the acceptor. Energy transfer from a donor
�conjugated segment� to an acceptor results in PL quenching
because the transferred excitation cannot be transferred back
to the polymer and hence contribute to PL. FRET between
conjugated segments results in energy relaxation and spatial
migration of excitons. To describe the FRET, we will use
distributions of excitons in energy and in quenching rate. The
quenching rate characterizes the exciton spatial position rela-
tive to the energy acceptors. By adding the quenching rate as
a new variable one can distinguish the excitons located at
different distances from the acceptors and take into account
spatial exciton migration through the conjugated segments
during FRET.

To describe PL quenching in our model, we need a num-
ber of assumptions: �i� The polymer-acceptor blended films
are thick enough to neglect any interface effects and thin
enough to avoid PL reabsorption. This condition is generally
fulfilled in films with thickness in the range �20–200 nm.
�ii� Photoexcitation is monochromatic and all conjugated
segments of the polymer have the same absorption cross-
section at the photoexcitation wavelength. �iii� Intensity-
dependent PL quenching is neglected. �iv� The temperature
influence on the FRET is low enough, i.e., exciton migration
in energy is unidirectional from the higher energies to the
lower ones according to Eq. �3�. �v� The PL and nonradiative
transition rates of excitons are energy independent, with the
vibrational relaxation rate being much higher. �vi� FRET oc-
curs between pointlike donors and acceptors, i.e., exciton
delocalization along the conjugated segments is not taken
into account. Apart from these approximations, we will use
the minimum donor-acceptor distance rmin limited by their
sizes. Finally, we will approximate Förster radii by two ones:
between conjugated segments and between a conjugated seg-
ment and an energy acceptor. These assumptions will be dis-
cussed below in Sec.IV.

In the model, we use a quenching rate � as an independent
variable characterizing an exciton. This rate can map the
spatial position of each exciton relative to the quenchers. As
a result, exciton spatial migration can now be described via a
variation in �. Suppose that quenchers are somewhat spa-
tially distributed in the sample. For an exciton generated at
any point in the sample, we can assign a certain quenching
rate that will depend on the distances to the quenchers. As a
result, the exciton can be characterized by a distribution on
exciton quenching rates P��� that depends both on the accep-
tor spatial distribution and the specific quenching mecha-
nism. The explicit form of P��� for the random distribution
of quenchers and Forster quenching mechanism will be
given later.

Consider the processes determining the number and prop-
erties of the singlet excitons and write down a steady-state
balance equation for their distribution in energy and quench-
ing rates N�E ,��,
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�N�E,��
�t

=
G

n
· g�E� · P��� − N�E,���1

�
+

1

�R
� −

N�E,�� · ri
6 · 4�

3 · � · rmin
3 �

0

E

g�EA�dEA

+
g�E� · ri

6 · 4� · P���
3 · � · rmin

3 · �
E

� ��
0

�

N�ED, �̃�d�̃�dED − N�E,�� · � . �4�

Here, the first term in the RHS describes photogeneration of
excitons with the photon absorption rate G at conjugated
segments with the concentration g�E�, with their total con-
centration being n=	0

�g�ED�dED. The second term takes into
account exciton radiative and nonradiative relaxation with
characteristic times � and �R, correspondingly. The third and
forth terms in the RHS of Eq. �4� characterize FRET to lower
energy and from higher energy conjugated segments, respec-
tively; these terms are discussed below. The last term in Eq.
�4� describes exciton quenching via FRET to an energy ac-
ceptor. According to the definition of �, the quenching by
acceptors is energy independent and determined solely by �.

We describe intrapolymer energy transfer as the disap-
pearance of an exciton with parameters �E1 ,�1� and the ap-
pearance of an exciton with parameters �E2 ,�2�. The condi-
tion E2�E1 limits the available FRET routes.

The disappearance of excitons with parameters �E ,�� is
described by the third term in the RHS of Eq. �4�. The dis-
appearance rate depends on the number of these excitons and
the FRET rate 
Eq. �3�� integrated over the available energies

0,E� and coordinates 
rmin,��,

� �N�E,��
�t

�
FRET�−�

= − N�E,�� · �
rmin

�

�4�r2�
0

E

g�EA� · ��E,EA,r,T�dEAdr ,

�5�

where rmin is the minimal distance between conjugated seg-
ments. Substituting ��E ,EA ,r ,T� in Eq. �5� for Eq. �3� and
denoting the Forster radius as ri, we get the third term in the
RHS of Eq. �4�.

FRET from higher energy segments results in excitons
appearing at lower energy segments. The number of higher
energy excitons generating an exciton with energy E, given
by the forth term in the RHS of Eq. �4�, is obtained from the
integrated over � exciton distribution N�E ,��, multiplied by
the FRET rate 
Eq. �3��, and integrated over all energies
higher than E. Multiplying the result by the concentration of
conjugated segments with energy E and integrating the prod-
uct over space we get

� �N�E�
�t

�
FRET�+�

= �
rmin

�

g�E� · 4�r2�
E

�

��
0

�

N�ED, �̃�d�̃� · ��ED,E,r,T�dEDdr .

�6�

Now we need to find the quenching rate � of the appeared

exciton. Assume that the exciton appears at a random point
in space and its quenching rate does not depend on the
former one, i.e., it is determined solely by the function P���,

� �N�E,��
�t

�
FRET�+�

= P���� �N�E�
�t

�
FRET�+�

. �7�

This is evidently true for the homogeneous acceptor dis-
tribution. In the case of inhomogeneous acceptor distribution
this assumption is true if the characteristic distance of FRET
is higher than the characteristic length of acceptor inhomo-
geneity, e.g., its aggregation. Combining Eqs. �3�, �6�, and
�7�, we get the forth term in the RHS of Eq. �4� that describes
FRET from the higher energy segments.

B. Balance equation

We have taken into account all the processes determining
the exciton kinetics within our model. Consider the steady-
state case in which the appearance of excitons of a given
energy and quenching rate is balanced with their disappear-
ance. Equating the LHS of Eq. �4� to zero, we get

g�E�P����G

n
+

ri
64�

3�rmin
3 �

E

� �
0

�

N�ED, �̃�d�̃�dED�
= N�E,��T�E,�� . �8�

where T�E ,��= 1 / � + 1 / �R +�+ ri
64� / �3�rmin

3 �	0
Eg�EA�dEA.

The solution of Eq. �8� is given in Appendix A. First of
all, we are interested in the function N�E ,�� integrated over
all quenching rates that gives the exciton distribution in en-
ergy,

N�E� = �
0

�

N�E,��d�

= G
g�E�

n
exp��

0

�

P���lnT��,��
T�E,�� �d���

0

� P���d�

T�E,��
.

�9�

The PL intensity is proportional to the total number of
excitons that is obtained by integrating Eq. �9� over energy,

N = �
0

�

N�E�dE

=
3G�rmin

3

nri
64�

�exp��
0

�

P���ln ��RT��,��
�� + �R + ��R���d�� − 1� .

�10�
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Equation �10� gives the number of excitons in a blend of
conjugated polymer with energy acceptors �quenchers� that
quench the polymer PL via FRET. The Förster radius for the
polymer-quencher interaction and the quencher concentra-
tion are parameters of the function P���. This function is
calculated in Appendix B for the homogeneous spatial distri-
bution of quenchers,

P��� =
2�qrF

3

3���3
	�� −

16�2q2rF
6

9�
� , �11�

where 	 is the Heavyside function, rF is the Förster radius
for FRET between a polymer conjugated segment and a
quencher, and q is the quencher concentration.

C. PL quenching

The dependence of exciton number N on the concentra-
tion of homogeneously distributed quenchers is given by Eq.
�10� and the explicit form of P��� 
Eq. �11��. Introducing the
following notations:

A = GQ�, B2 =
4�ri

6n

3rmin
3 Q + 1, C =

4�rF
3

3
�Q , �12�

where Q=�R / ��R+�� is the PL quantum yield, one can write
down the result as

N�q� =
A

B2 − 1
· �B2 + �Cq�2

1 + �Cq�2 · exp�Cq�� 1

B
− 1�

+ 2Cqarctan�Cq� −
arctan�Cq 
 B�

B
�� − 1� .

�13�

The PL intensity in the blend is proportional to the exci-
ton number N. In experiment, the normalized PL dependence
on quencher concentration q is usually measured. To get this
dependence, we divide Eq. �13� by the exciton number in the
pristine polymer N�0�,

PL�q� =
N�q�
N�0�

=
N�q�

A
. �14�

Equation �14� gives the two-parametric analytical expression
for the PL dependence on the quencher concentration. Figure
1 shows PL quenching curves calculated from Eq. �14� for
various B and C. As Eq. �12� shows, these two parameters
are combinations of the four parameters characterizing the
polymer �ri, Q, n, and rmin� and the one characterizing the
polymer-quencher interaction �rF�. The radius rF can be cal-
culated if the polymer PL quantum yield Q is known. To
calculate ri, one also needs to specify the density of conju-
gated segments n, and the distance rmin between them can be
estimated as rmin=n−1/3. The values of parameter B in Fig.
1�a� correspond to ri=0.7, 1.1, and 2 nm assuming that rF
=1 nm, Q=0.5, n=2�1021 cm−3, and rmin=0.6 nm. The
values of parameter C in Fig. 1�b� correspond to rF=0.5, 1,
and 2 nm assuming that ri=1.1 nm and the rest of param-
eters are the same. As follows from Fig. 1�a�, the PL quench-
ing dependence on B is relatively weak. At the same time,
the PL quenching dependence on C determined mostly by
the Förster radius rF of energy transfer from the conjugated
segments to the quenchers 
see Eq. �12�� is relatively strong
�Fig. 1�b��.

The asymptote of the PL quenching curve at high
quencher concentration can be easily obtained from Eq. �13�,

N�q� →
q→�

A

3�Cq�2 + o� 1

q2� . �15�

The asymptotes for several C are depicted in Fig. 1�b�.
One can also get the asymptotic approximation of Eq.

�13� when FRET between the conjugated segments is either
absent �ri=0� or extremely efficient �ri→��. In the former
case �B=1�, we have

(b)(a)

FIG. 1. �Color online� Normalized PL quenching curves. �a� PL quenching curves for different B parameters. Broken curves show the
asymptotes for B=1 and B→�. �b� PL quenching curves for different C parameters. Broken lines show the asymptotes at high acceptor
concentration �q→��.

ZAPUNIDI, KRYLOVA, AND PARASCHUK PHYSICAL REVIEW B 79, 205208 �2009�

205208-4



N�q� →
B→+1

A�1 − Cq�

2
− atan�Cq��� + o�B − 1� . �16�

In the latter case �B→��, we obtain

N�q� →
B→�

A exp
2Cq�atan�Cq� − �/2��
1 + �Cq�2 . �17�

The asymptotes for B=1 and B→� are shown in Fig.
1�a�. Combining Eqs. �16� and �17�, we get the maximum
contribution of FRET between the conjugated segments into
PL quenching,

max
q�
0,��� lim

B→�

N�q��

lim
B→+1


N�q��� =
3

e2 � 0.4. �18�

As a result, the exciton migration via intrapolymer FRET
can increase the quenching efficiency up to �60%.

III. EXPERIMENTAL

To check the above model, we studied PL quenching in
blends of an archetypical luminescent conjugated polymer
poly
2-methoxy-5-�2-ethyl-hexyloxy�-l,4-phenylene vi-
nylene� �MEH-PPV� with low-molecular-weight acceptor
2,4,7-trinitrofluorenone �TNF�. The MEH-PPV �5 g/l� and
TNF ��0.5 g / l� were dissolved separately in chloroben-
zene. Then the solutions were mixed with molar ratios MEH-
PPV:TNF ranging from 1:0.0001 to 1:0.4 per monomer.
Blend and reference MEH-PPV pristine films were deposited
on glass substrates by drop- and spin-casting at 1300 rpm
from the same solution. Drop- and spin-casting methods pro-
vide very different times of solvent evaporation during the
film formation that can influence possible acceptor aggrega-
tion �i.e., the acceptor distribution in the polymer�. To check
possible aggregation effects on PL quenching, the two meth-
ods of film preparation were used.

PL was measured in the backscattering geometry under
ambient conditions. The PL signal was dispersed using a
monochromator with additional filters and was recorded us-
ing a Si detector and a lock-in amplifier. The samples were
excited at a wavelength of 532 nm with a maximum intensity
of 50 mW /cm2. The shapes of all the PL spectra were iden-
tical excluding the sample with the highest TNF content
�1:0.4�, for which the PL was below the noise level. The PL
intensity was measured at the maximum of MEH-PPV PL �at
600 nm� in several spots on each sample with subsequent
averaging. The optical thickness of the spin-cast films was
about unity, and the PL data were corrected to their optical
absorption at the pump wavelength. As the drop-cast films
were optically thick at this wavelength, the PL data are given
without such a correction. To take into account the possible
photodegradation effect during recording the PL spectra, we
recorded a set of PL spectra successively and compared
them. The photodegradation affected the PL intensity by no
more than 10%–15% for pristine MEH-PPV films, which are
most prone for the effect. For the blends, the photodegrada-
tion rate was decreased together with the PL.22

IV. COMPARISON WITH EXPERIMENTAL DATA

To compare the above model with experiment, we have
recorded PL quenching curves in MEH-PPV/TNF blend
films. In these blends, a charge-transfer complex �CTC� be-
tween MEH-PPV and TNF is formed in the electronic
ground state.16,17 This CTC has considerable absorption in
the MEH-PPV optical gap that results in good spectral over-
lapping of the polymer PL and CTC absorption spectra.
Therefore, the CTC can be an efficient energy acceptor
�quencher� collecting the excitons via FRET from the photo-
excited MEH-PPV conjugated segments.

Figure 2 compares the experimental and model data on
PL quenching in MEH-PPV/TNF blends. The data are pre-
sented for two different film preparation methods: drop- and
spin-casting. Both experimental curves are quite similar in a
dynamic range of 1000 regardless very different evaporation
times during the solidification. This similarity can be a result
of a more or less homogenous acceptor distribution in the
films. This suggestion is in accordance with the light
scattering23 and Raman24 data on MEH-PPV/TNF blend
films.

To obtain the Förster radii ri and rF from fitting param-
eters B and C, respectively, we need to specify the other
parameters in Eq. �12�. We used the experimentally mea-
sured PL quantum yield in MEH-PPV drop-cast films Q
=0.2 �Ref. 25� and suggested that the average MEH-PPV
conjugated segment length is five polymer units.26 As a re-
sult, we have n=4.5�1020 cm−3 taking the film density as
1 g /cm3. The minimal distance between MEH-PPV conju-
gated segments rmin=0.4 nm is taken from the x-ray
data.27,28 Accordingly, we obtain the radii ri=2.0�1 and rF
=3.4�0.1 nm for intrapolymer and polymer-quencher

FIG. 2. �Color online� Normalized PL in MEH-PPV/TNF blends
as a function of acceptor concentration for films prepared by spin
casting �circles� and drop-casting �triangles�. Curves are fits accord-
ing to Eq. �14� with parameters B=20�19

30, C= �7.3�1.2�
�10−20 cm3 for drop-cast �solid�, and B=19�18

58, C= �6�2.1�
�10−20 cm3 for spin-cast films �dashed�.
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FRET, correspondingly, for the drop-cast films. We give the
Förster radii only for the drop-cast films as the fitting accu-
racy for them is better than for the spin-cast ones �Fig. 2�.

One can compare the polymer-quencher Förster radius rF
derived from fitting with that calculated from the overlap-
ping of the MEH-PPV PL and quencher �CTC� absorption
spectra according to Eq. �1�. Using the MEH-PPV/TNF CTC
absorption spectrum from Ref. 29 and the refraction index
spectrum for MEH-PPV from Ref. 30, we calculated the
polymer-quencher Förster radius rF=3.5 nm. Therefore, the
two rF obtained from the direct calculation and fitting are in
excellent agreement.

In addition, we have applied our model to the experimen-
tal data on PL quenching in blends of phenyl-substituted
polyphenylenevinylene �PhPPV� and TNF.31 The experimen-
tal quenching curve �Fig. 8 in Ref. 31� is very similar in
shape to those plotted in Fig. 2. The presence of the CTC as
a quencher of the polymer PL in PhPPV/TNF blends is ex-
pected similar to that observed in MEH-PPV/TNF blends.16

Indeed, the CTC can be identified as a feature in the photo-
current spectra of PhPPV/TNF blends.31 We have found that
the model curve according to Eq. �14� excellently fits the PL
quenching data in the PhPPV/TNF blends with B=1�0

0.9 and
C= �5.2�0.8��10−20 cm−3. Using Q=0.4,31 we obtain the
polymer-quencher Förster radius rF=2.7�0.1 nm. Note that
the approximation error for parameter B was too large to
estimate the intrapolymer Forster radius ri.

V. DISCUSSION

Our model gives the steady-state energy distribution of
excitons 
Eq. �9�� of a conjugated polymer blended with en-
ergy acceptors. Integration of Eq. �9� over energy gives the
total number of excitions 
Eq. �10��, which is independent on
the energy density of excitonic states g�E�. It is well known
that acceptor molecules are prone to aggregation in the poly-
mer matrix.32 The spatial distribution of acceptor in our
model is taken into account by the function P��� that allows
the model to be adapted to different acceptor distributions in
the blend. Specifically, phase separated donor-acceptor
blends could be modeled. In the simplest case of the homo-
geneous acceptor distribution, the PL quenching curve is ex-
pressed in the elementary functions 
Eq. �13��.

The normalized PL quenching curve 
Eq. �14�� contains
the only two fitting parameters B and C. As Eq. �12� shows,
the former is related to the Förster radius of the intrapolymer
energy transfer �ri�, the PL quantum yield, and a volume per
one conjugated segment. The latter depends only on the en-
ergy transfer radius from a conjugated segment to the
quencher �rF� and the PL quantum yield. In the case of unit
PL quantum yield, the B and C parameters can be associated
with volumes corresponding to ri and rF, respectively 
Eq.
�12��. In fact, the C parameter is the volume of a ball with
radius rF, and the B parameter �if B�1� is proportional to
the volume of a ball with radius ri normalized to the charac-
teristic volume occupied by a conjugated segment.

Equation �14� has the simple asymptotes at high acceptor
concentration 
Eq. �15�� and also at ri=0 
Eq. �16�� and ri
→� 
Eq. �17��. The latter asymptotes allowed us to find the

maximum contribution of intrapolymer FRET into PL
quenching 
see Eq. �18�� amounting �60%. At the same
time, change in the Förster radius rF only by two times �see
Fig. 1� changes the PL intensity by two orders of magnitude.
The explanation of this different sensitivity of PL quenching
to rF and ri is straightforward. As follows from Eq. �3�, in-
crease in the rF by n times enhances the quenching rate by n6

times, whereas any increase in the ri results mainly in more
efficient migration of excitons. The latter does increase the
PL quenching efficiency but only for a small part of excitons
located farther than rF from the quenchers.

Application of our model to the experimental PL quench-
ing data on PhPPV/TNF blends from Ref. 31 and our data on
MEH-PPV/TNF blends gives excellent agreement: the two-
parametric closed-form expression closely follows the mea-
sured PL quenching curve over a dynamic range more than
three orders of magnitude. The polymer-quencher Förster ra-
dius derived from the fit is rF=2.7�0.1 nm in the PhPPV/
TNF blends and rF=3.4�0.1 nm in the MEH-PPV/TNF
blends. This difference in rF corresponds a higher PL
quenching efficiency observed for MEH-PPV �Fig. 2� as
compared to PhPPV �Fig. 8 in Ref. 31�. Possibly, the CTC,
as an energy acceptor, in the PhPPV/TNF blends is less pro-
nounced than in the MEH-PPV/TNF blends due to bulkier
side groups of PhPPV.

Remarkably, the rF for the MEH-PPV/TNF blends per-
fectly matches the FRET radius calculated from the spectral
overlapping according to Eq. �1�. This correspondence of the
two FRET radii confirms the usefulness of our model in spite
of its severe approximations �see below�. The intrapolymer
FRET radius in the MEH-PPV/TNF blends was estimated to
be ri=2.5�1.2 nm. Note that the fitting accuracy of ri is far
worse than that of rF �Fig. 2�. This is explained by weak PL
quenching dependence on the intrapolymer FRETs 
see Fig.
1�a�� that is comparable to the experimental error.

Note that the same PL quenching data on PhPPV/TNF
blends were also described by the sphere-of-action model.33

In this model, an exciton has a constant quenching rate when
it approaches to a quencher closer than a quenching radius rq
during migration. The rq=1.4 nm was obtained in Ref. 33
that is far less than the rF. However, the rF and rq should not
be compared as they correspond to the different quenching
models.

As mentioned in the introduction section, the model of
Arkhipov et al. �Ref. 12� can also be used to describe the
steady-state PL quenching in doped conjugated polymers via
FRET to energy acceptor. That model describes the PL ki-
netics, and its steady-state solution needs numerical integra-
tion over time. On the other hand, our model has initially
been formulated in the steady state. Using assumptions �i–vi�
similar to those of Arkhipov et al. �Ref. 12�, the model al-
lows the closed-form exact solution giving the PL quenching
curve depending on the two parameters B and C 
Eq. �14��.
Thus, the key advantage of our model is that allows fitting
experimental data on cw PL quenching by the two-
parametric analytical expression 
Eq. �14��. In addition, our
model can be extended to take into account acceptor aggre-
gation that is typical for blends with high acceptor content.
This extension can be done by a modification of the prob-
ability distribution on quenching rate P���.
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An important PL quenching process that is not included in
the model is charge transfer to an electron acceptor. In blends
of conjugated polymers and fullerenes, it is usually believed
that photoinduced charge transfer results in PL quenching.34

Photoinduced charge transfer can be included in our model
by constructing an appropriate quenching rate density func-
tion P��� taking into account both quenching probabilities,
i.e., via FRET and photoinduced charge transfer.

Now discuss the assumptions of our model presented in
Sec. II. We suggested that spatial exciton migration results
only from FRET. Nevertheless, excitons could also move via
Dexter energy transfer between the conjugated segments.35

The Dexter energy transfer is short-ranged as compared to
the FRET as the former needs overlapping of the molecular
orbitals of conjugated segments. Therefore, the Dexter
mechanism is expected to result in small underestimating of
exciton migration. The latter could possibly be taken into
account by a small effective increase in the intrapolymer
FRET.

We assumed above that FRET occurs between point di-
poles �vi�. However, excitons in conjugated polymers can be
delocalized over a number of repeat units that could influ-
ence FRET. Exciton delocalization can be taken into account
by several ways, e.g., by using the linear dipoles
approach36–38 or the transition density approach.39 If the
characteristic exciton delocalization length is shorter than the
intrapolymer Förster radius, the exciton delocalization is ex-
pected to be ineffective. Otherwise, the point-dipole approxi-
mation can result in underestimation or overestimation of the
intrapolymer Förster radius depending on the mutual orien-
tation of the conjugated segments.40 These deviations are
likely to be cancelled out in amorphous polymer films that
can explain very good agreement of our model with the ex-
perimental data.

The low-temperature approximation �iv� prohibits any in-
crease in the exciton energy resulting from the intrapolymer
FRET. This approximation results in neglect of the quasi
isoenergetic exciton migration in the polymer after the fast
downhill energy transfer.41 Nevertheless, the rate of downhill
FRET during the initial exciton relaxation41 and subsequent
quenching can be much faster than the isoenergetic transfer
rate. To fulfill this condition, it is sufficient to have the typi-
cal width of exciton energy distribution g�E� considerably
larger than the characteristic thermal energy kT. This condi-
tion is usually fulfilled in conjugated polymers.

We assumed above that that all the conjugated segments
have the same absorption cross-section at the photoexcitation
wavelength �ii�. On one hand, it is well known that the ab-
sorption and PL spectra of conjugated chains depend on their
length. On the other hand, these spectra are usually consid-
erably broadened due to strong electron-vibrational coupling.
This broadening can weaken the absorption cross-section de-
pendence on the conjugated length and on the photoexcita-
tion wavelength. This feature of polymer conjugated chains
justifies assumption �ii�. Moreover, it substantiates using the
effective Förster radii ri and rF instead of the corresponding
distributions in them.

VI. CONCLUSION

We have developed an analytical model describing the
steady-state PL quenching via FRET in homogeneous blends

of a conjugated polymer and energy acceptor molecules. The
model can also be extended to the more complicated cases of
phase separated polymer-acceptor blends. Spatial and energy
migration of excitons stemming from the multichromophoric
structure of the conjugated polymer are taken into account in
the model. Importantly, the model has the only two fitting
parameters associated with the intrapolymer and polymer-
acceptor FRET radii. The model predicts that the intrapoly-
mer FRET can enhance the PL quenching up to 60%. Com-
parison of the model to the experimental data in blends of
soluble polyphenylenevinylenes and a low-molecular-weight
electron acceptor resulted in very good agreement indicating
that the model can be a useful and simple tool for data analy-
sis on steady-state PL quenching in polymer-acceptor blends.
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APPENDIX A

The solution of Eq. �8� can be obtained by introducing the
new sought function R�E ,��

N�E,�� = g�E�P���R�E,�� �A1�

and subsequent differentiation of Eq. �8� by �. As a result,
we get the linear differential homogeneous equation,

�R�E,��
��

T�E,�� + R�E,�� = 0, �A2�

where T�E ,�� is defined in Eq. �8�. The solution of Eq. �A2�
is known accurate to a function X�E�,

R�E,�� =
X�E�

T�E,��
. �A3�

Substituting the solution in the initial equation 
Eq. �8�� and
differentiating it by E, we get a linear homogeneous differ-
ential equation,

X��E� +
ri

64�

3�rmin
3 g�E�X�E��

0

� P���
T�E,��

d� = 0. �A4�

Using relations between N�E ,�� and R�E ,�� 
Eq. �A1�� and
between R�E ,�� and X�E� 
Eq. �A3�� and then applying them
to the solution of Eq. �A4�, we can obtain function N�E ,��
accurate to some constant C,

N�E,�� = C
g�E�P���
T�E,��

�exp�− �
0

�

P���ln T�E,��

1 
 � + 1 
 �R + �
�d�� .

�A5�

The constant C is found by substitution the solution �A5�
into the initial equation 
Eq. �8��,
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C =
G

n
exp��

0

�

P���ln T��,��

1 
 � + 1 
 �R + �
�d�� . �A6�

The final form of N�E ,�� can be found by substituting Eq.
�A6� into Eq. �A5�,

N�E,�� = G
g�E�

n

P���
T�E,��

exp��
0

�

P���lnT��,��
T�E,�� �d�� .

�A7�

APPENDIX B

Each exciton can be characterized by a quenching rate via
FRET to the energy acceptor. This rate depends on the exci-
ton position relative to the acceptors. For any exciton posi-
tion, there is a probability density function P��� to have the
quenching rate �. To obtain P���, one must find for each � a
corresponding phase-space density of acceptor coordinates in

which the quenching rate is in the range 
� ,�+d��, divide it
by d�, and then normalize the result to the whole phase-
space volume. One can find P��� by finding the primitive of
P��� and its subsequent differentiation.

To build a probability density function P��� for homoge-
neously distributed acceptor quenching the PL via FRET, we
consider a solid sphere with radius R. Then we put an exci-
ton in the sphere center and n acceptors randomly distributed
in the sphere. The acceptor concentration q is

q =
3

4�

n

R3 . �B1�

We denote the primitive of P��� in the sphere by Fn�� ,R�. To
find Fn�� ,R�, we need to calculate the normalized phase-
space density of acceptors coordinates where the quenching
rate is less than �. This function is then described by the
integral of the Heavyside function over all acceptor coordi-
nates normalized on the whole phase-space volume,

Fn��,R� =
1

�4�/3R3�n · �
0

2� �
−�/

�/2 �
0

R

¯ �
0

2� �
−�/

�/2 �
0

R

n

��� − �
i=1

n
rF

6

�ri
6�r1

2 sin��1�dr1d�1d�1 . . . rn
2 sin��n�drnd�nd�n,

2 2

�B2�

where 	 is the Heavyside function determining whether the
quenching rate is less than �; and rm ,m ,�m are the m-th
acceptor spherical coordinates. Integrating over the angular
coordinates and denoting rm

6 as xm, we can simplify Eq. �B2�,

Fn��,R� =
1

�2R3�n�
0

R6

¯ �
0

R6

n

��� − �
i=1

n
rF

6

�xi
�d�x1 . . . d�xn.

�B3�
Now we isolate the nth acceptor in the Heavyside function,

	�� − �
i=1

n
rF

6

�xi
�=	�� − �

i=1

n−1
rF

6

�xi
�	�xn −

1

��

rF
6 − �

i=1

n−1
1

xi
� . �B4�

The Heavyside function in the integrand of Eq. �B3� only
limits the integration range. Using the identity

�
a

b

	�x − c�f�x�dx � �
c

b

f�x�dx · 	�b − c�, c � a

�B5�

and Eqs. �B4� and �B5�, it is possible to take the modified
Heavyside function out from the last integral in Eq.�B3�,

Fn��,R� =
1

2nR3n�
0

R6

¯ �
0

R6

n−1

���1 − �
i=1

n−1
rF

6

�xi
��

1

��

rF
6

− �
i=1

n−1 1
xi

R6 dxn

�xn

dx1

�x1

. . .
dxn−1

�xn−1

,

�B6�
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where

�i = � − i
rF

6

�R6 . �B7�

Comparing the initial Eq. �B3� and modified Eq. �B6�, one
can notice that this operation can be repeated until the
Heavyside function leaves the integrand,

Fn��,R� =
	��n�
2nR3n� 1

��n−1

rF
6

R6 �
1

��n−2

rF
6

− �
i=1

1 1
xi

R6

. . . �
1

��1

rF
6

− �
i=1

n−2 1
xi

R6 �
1

��o

rF
6

− �
i=1

n−1 1
xi

R6

�
dx1

�x1

. . .
dxn

�xn

. �B8�

Supposing that �2→�0 at R→�, one can get the function
Fn�� ,R�,

Fn��,R� = �1 −
nrF

3

R3���n
�	��n2� . �B9�

We get rid of R and n by taking the limit R→� and using the
concentration q according to Eq. �B1�. Differentiating the
result by �, we get the function P���,

P��� =
�F���

��
=

2�qrF
3

3���3
	�� −

16�2q2rF
6

9�
� . �B10�
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